The MAX-CMO problem and its representation Improving an efficiency of the heuristic search

> Paweł Widera pawel.widera@cs.nott.ac.uk

SUPERVISORS Natalio Krasnogor, Jonathan Garibaldi

5th East Midlands Proteomics Workshop

2006-11-15

Outline

Problem definition

- Biological background
- Measure of similarity

Dual representation

Metaheuristic search efficiency

- Search method outline
- Possible improvements

• E >

Protein comparison

- root mean square distance
- difference of distance matrices
- alignment of contact maps

Contact map

Mathematical construct capturing the **proximity relation** between residues.

2006-11-15 3 / 16

Protein comparison



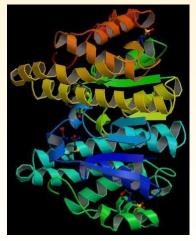
- root mean square distance
- difference of distance matrices
- alignment of contact maps

Contact map

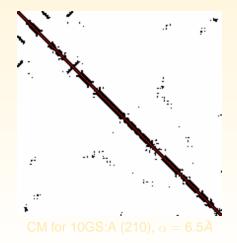
Mathematical construct capturing the **proximity relation** between residues.

2006-11-15 3 / 16

Proximity relation depicted as 2D binary matrix



10GS (GLUTATHIONE S-TRANSFERASE P1-1)



• E >

Proximity relation depicted as graph

Contact map graph

•
$$r_i \mathbf{R} r_j \Leftrightarrow \delta(r_i, r_j) \leqslant \alpha$$
,
 $\alpha \in [2\mathring{A}, 9\mathring{A}]$

• node \leftrightarrows residue

• edge \leftrightarrows contact

PAWEŁ WIDERA

THE MAX-CMO PROBLEM AND ITS REPRESENTATION

2006-11-15 5 / 16

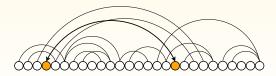
< ∃ →

Proximity relation depicted as graph

Contact map graph

- $r_i \mathbf{R} r_j \Leftrightarrow \delta(r_i, r_j) \leqslant \alpha$, $\alpha \in [2\mathring{A}, 9\mathring{A}]$
- node \leftrightarrows residue
- edge \leftrightarrows contact

Proximity relation depicted as graph



Contact map graph

- $r_i \mathbf{R} r_j \Leftrightarrow \delta(r_i, r_j) \leqslant \alpha$, $\alpha \in [2\mathring{A}, 9\mathring{A}]$
- node \leftrightarrows residue
- edge \leftrightarrows contact

MAX-CMO problem

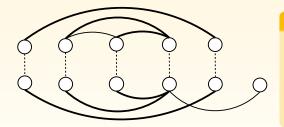


Definition

Maximum contact map overlap is an **alignment** of two proteins that **maximises** the structural **similarity**.

< ∃⇒

MAX-CMO problem



Definition

Maximum contact map overlap is an **alignment** of two proteins that **maximises** the structural **similarity**.

< ∃⇒

Graph isomorphism

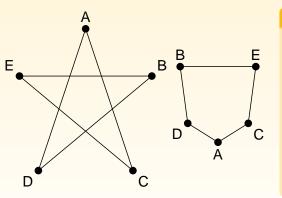


Figure: Isomorphic or not?

Graph isomorphism

Two graphs are isomorphic if there is a one-to-one correspondence between their nodes and there is an edge between two nodes of one graph if and only if there is an edge between the two corresponding nodes in the other graph.

Subgraph isomorphism Is G1 isomorphic to a subgraph of G2?

PAWEŁ WIDERA

THE MAX-CMO PROBLEM AND ITS REPRESENTATION

2006-11-15 7 / 16

Graph isomorphism

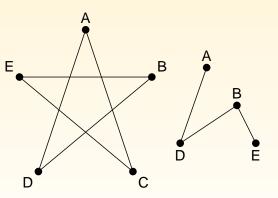


Figure: What about a subgraph?

Graph isomorphism

Two graphs are isomorphic if there is a one-to-one correspondence between their nodes and there is an edge between two nodes of one graph if and only if there is an edge between the two corresponding nodes in the other graph.

Subgraph isomorphism

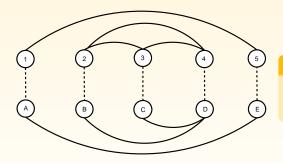
Is G1 isomorphic to a subgraph of G2?

2006-11-15 7 / 16

DUAL REPRESENTATION

Domain of a problem

Classical approach

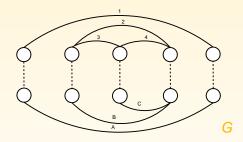


Representation

- protein alignment
- nodes matching

Domain of a solution

Line graph approach



Line graph

- a node of L(G) represents an edge of G
- two nodes of L(G) are adjacent if edges in G share a common node

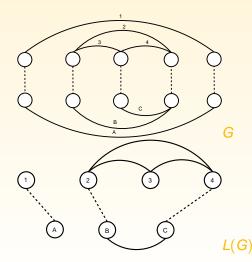
Representation

- graph isomorphism
- edges matching

2006-11-15 9 / 16

Domain of a solution

Line graph approach



Line graph

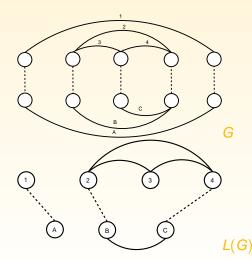
- a node of L(G) represents an edge of G
- two nodes of L(G) are adjacent if edges in G share a common node

Representation

- graph isomorphism
- edges matching

Domain of a solution

Line graph approach



Line graph

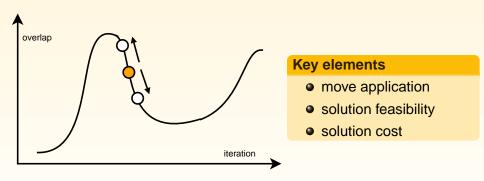
- a node of L(G) represents an edge of G
- two nodes of L(G) are adjacent if edges in G share a common node

Representation

- graph isomorphism
- edges matching

Search strategy

Beyond random walk

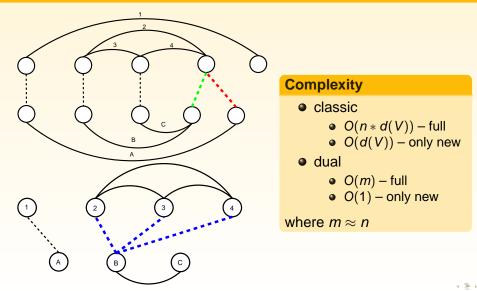


< ∃ →

METAHEURISTIC SEARCH EFFICIENCY POSSIBLE IMPROVEMENTS

How good the move is?

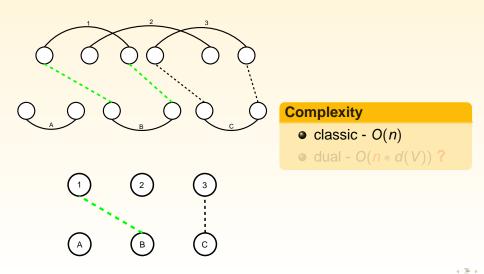
Determining the solution value



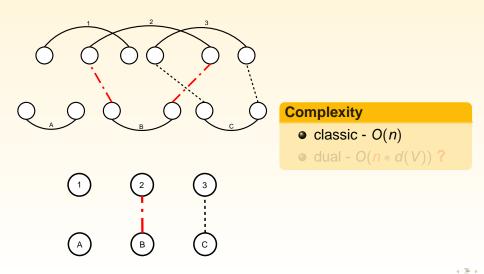
PAWEŁ WIDERA

2006-11-15 11 / 16

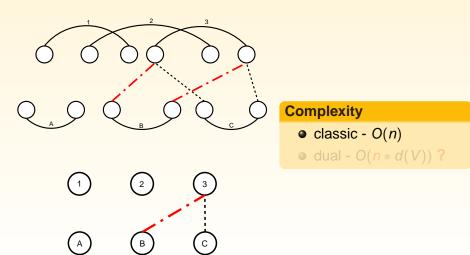
Checking the solution feasibility



Checking the solution feasibility

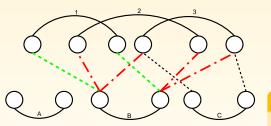


Checking the solution feasibility



< ∃ →

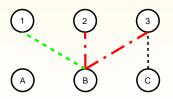
Checking the solution feasibility



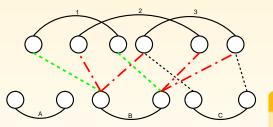
Complexity

• classic - O(n)

• dual - O(n * d(V)) ?

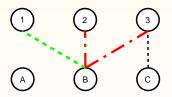


Checking the solution feasibility



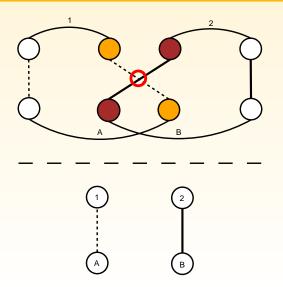
Complexity

- classic O(n)
- dual O(*n* * *d*(*V*)) ?



Crossing conditions

Rules for feasibility checking



Consistent order

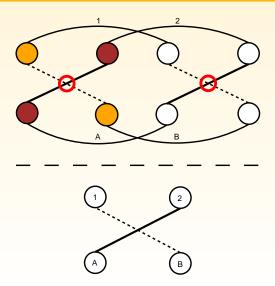
Relation of **succession** between **source** nodes should also hold for assigned **target** nodes.

Crossing rules

- inner crossing
- outer crossing
- empirical prof of correctness

Crossing conditions

Rules for feasibility checking



Consistent order

Relation of **succession** between **source** nodes should also hold for assigned **target** nodes.

Crossing rules

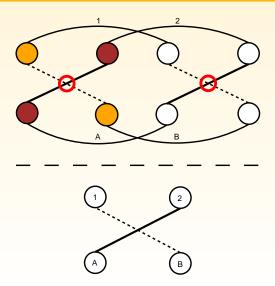
- inner crossing
- outer crossing

 empirical prof of correctness

2006-11-15 13 / 16

Crossing conditions

Rules for feasibility checking



Consistent order

Relation of succession between **source** nodes should also hold for assigned target nodes.

Crossing rules

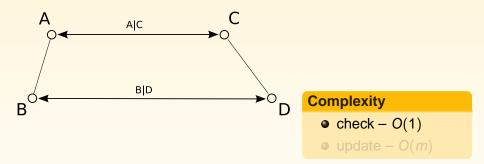
- inner crossing
- outer crossing
- empirical prof of correctness

2006-11-15

13 / 16

The concept of limits

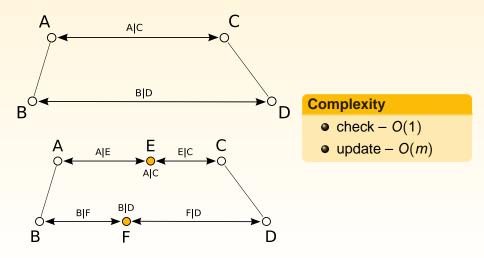
Improving the efficiency



4 ≣ ▶ 14 / 16

The concept of limits

Improving the efficiency



SUMMARY

Summary New algorithm vs. classical aproach

Computational complexity comparison

evaluation of solution O(1) vs. O(d(V))

feasibility check $O(m^2 * O(1) + O(m))$ vs. $O(n^2 * O(n))$ overall gain O(n) times faster

Future work

test on reference data sets

• make available in ProCKSi server

Summary New algorithm vs. classical aproach

Computational complexity comparison

evaluation of solution O(1) vs. O(d(V))feasibility check $O(m^2 * O(1) + O(m))$ vs. $O(n^2 * O(n))$ overall gain O(n) times faster

Future work

test on reference data sets

• make available in ProCKSi server

SUMMARY

Summary New algorithm vs. classical aproach

Computational complexity comparison evaluation of solution O(1) vs. O(d(V))feasibility check $O(m^2 * O(1) + O(m))$ vs. $O(n^2 * O(n))$ overall gain O(n) times faster

Future work

test on reference data sets

make available in ProCKSi server

Summary New algorithm vs. classical aproach

Computational complexity comparison

evaluation of solution O(1) vs. O(d(V))feasibility check $O(m^2 * O(1) + O(m))$ vs. $O(n^2 * O(n))$ overall gain O(n) times faster

Future work

- test on reference data sets
- make available in ProCKSi server

Thank you!

Acknowledgements

This work was supported by **Marie Curie Action** MEST-CT-2004-7597 under the **Sixth Framework Programme** of the European Community.

SIXTH FRAMEWORK PROGRAMME

MARIE CURIE ACTIONS

Contact

pawel.widera@cs.nott.ac.uk

PAWEŁ WIDERA

THE MAX-CMO PROBLEM AND ITS REPRESENTATION

2006-11-15 16 / 16