# Protein Multiverse on University HPC Grid

## Azhar Ali Shah

Protein Multiverse Meeting, Sep 26, 2007



world-changing research

# Outline

- Related Work
- Complexity of the Problem
- Architectural Design
- Program Workflow Design (PWD)
- Infrastructure Details
- Discussion

# Related Work1

Mapping the Protein Universe (Holm, Sander 1996)

Motivations for all-on-all comparison:

- Distribution of known structures in shape space
- Grand view of the architecture of all proteins
- A map of physical attractor regions in the abstract shape space of proteins
  - Help to understand protein folding and evolution

## **Database Preparation**





One structure against several thousand structures takes 5 minutes on a normal workstation

#### On a high-dimensional fold space:

Families: Close range clusters Classification Folds: Intermediate range clusters Attractors: Long range clusters

#### **Domains**:

- Structures having same recurring substructures are grouped into *Domains* 
  - 1048 domains for 740 structures

#### Fold classes:

- Similar domains are grouped into *fold* classes 287 folds for 1048 domains
- Fold class is based on structural similarity and is analogous to *Family* which is based on sequence similarity.

#### Attractors:

Five long regions in an abstract high-dimensional **fold** space

# **Related Work2**

- Global mapping of protein structure space and application in structure-based inference of protein function (Hou et al. 2005), PNAS.
  - Problem:
    - Simple structure comparison does not provide function inference for a protein with new fold
  - Solution:
    - A method based on map distance of protein structure space

Kim says. "This map provides us with a conceptual framework to organize **all protein structures** and functions and have that information readily **available in one place**", Berkley Lab Research News, Feb 2003.



## Database preparation

## PDB\_SELECT 25 DATASET (Rel. Dec 2002)

- A representative subset of the PDB containing 1,949 chains having <25% sequence identity</p>
  - 51 chains further removed because of low resolution or length requirement of DaliLite
- The resultant dataset consisted 1,898 protein chains

## Mapping the pro IBM SP RS/6000 re space 1/3

- The pairwise structural similarity of 1,898 chains was measured with DaliLite (25,000 cpu hours)
- The 1898x1898 similarity matrix [s<sub>ij</sub>] was converted to dissimilarity matrix [d<sub>ij</sub>] using:

$$dij = \begin{cases} s_{99.95} - s_{ij} (s_{99.95} > s_{ij}, i \neq j) \\ 0, (i = j) \\ s_{99.95, (otherwise)} \end{cases}$$

This matrix was used for structure space map (SSM)

Where  $s_{99.95}$  is the 99.95<sup>th</sup> percentile of the distribution of all off-diagonal values of  $s_{ij}$ 

# Mapping the protein structure space 2/3

#### Four scores:

- Structure Space Map (SSM) distance score
- DaliLite similarity score
- DaliLite Z-score
- BLAST-E values of pairwise sequence alignment

#### ROC plots for evaluation

- Comparison of function inference among different scores based on GO function families
  - SSM outperforms other scores!

# Mapping the protein structure space 3/3

Based on present results it is predicted that the conceptual map of all protein structures would have same essential features.

Let us test this hypothesis!

Multi-method 3-D Map of Protein Structure Universe

#### Related work

## Complexity of the Problem

- Architectural Design
- Program Workflow Design (PWD)
- Infrastructure Details
- Discussion

# Complexity of the problem

## Job complexity

$$N_j = \frac{n(n-1)}{2} = \frac{41298x41297}{2} = 852741753$$

- Computational time
  - 4088 hours => 170 days

#### Storage complexity

- It takes 21 hours to download the PDB database with 41,298 structures which requires the space of 35 GB
- RAM would be the main obstacle for XML based input/output files

#### Related work

Complexity of the Problem

## Architectural Design

- Program Workflow Design (PWD)
- Infrastructure Details

### Discussion



#### Related work

- Complexity of the Problem
- Architectural Design

#### Program Workflow Design (PWD)

- Infrastructure Details
- Discussion

## PWD: Main Tasks







# Typical output XML file



</Pair>

#### **Result Collection**



## **Results Database Schema**

| CE          |      |         |  |
|-------------|------|---------|--|
| Pair_Lablel | RMSD | Z-Score |  |
| Str1:Str2   | 123  | 123     |  |
|             |      |         |  |

#### Related work

- Complexity of the Problem
- Architectural Design
- Program Workflow Design (PWD)
- Infrastructure Details
- Discussion

## Consistent look and feel for multiple applications/services

#### User Interface: Example



#### Weather



Get weather forecasts for your hometown and favorite places around the globe.



#### 

- Football: Arsenal leave it late
- E Funeral held for litter row man

#### Word of the Day

<u>camion</u> (noun) A low heavy horse cart without sides; used for haulage.

Synonyms: dray

Usage: An empty camion came bumping down the cobblestone street, pulled by two exhausted horses.

#### ProCKSI User Interface: Grid-based Portal Environment



#### Web service factory: Portals as web services

#### **Example: PROGRESS Portal Access:**

(Bogdanski Maciej et al. 2004)





# University of Nottingham: Triton



# University of Nottingham: Jupiter



#### Related work

- Complexity of the Problem
- Architectural Design
- Program Workflow Design (PWD)
- Infrastructure Details

## Discussion

## Discussion

## Is it OK?