ProCKSI - TechTalk

Dr. Daniel Barthel
School of Computer Science
University of Nottingham

Nottingham, 25-09-2007

Overview

- What is Parallelisation?
« Workflow

- System Architecture

« Scheduling

 Data Interchange

« Data Resources
« Agenda

« Conclusion

Introduction

Parallelisation (Wikipedia)
Simultaneous execution of some combination of multiple instances of programmed
instructions and data on multiple processors in order to obtain results faster.

Parallel Computing (Wikipedia):
Different parts of a program run simultaneously on two or more processors [or cores]
that are part of the same computer.

Distributed Computing (Wikipedia)
Different parts of a program run simultaneously on two or more computers that are
communicating with each other over a network.

Cluster computing (Wikipedia)
Jobs or processes happening on the separate cluster computer nodes need to
communicate actively during the computation.

Grid computing (Wikipedia)
Many independent jobs or packets of work, which do not have to share data between
the jobs during the computation process.

Workflow

Dataset @ [
Manager :
|
|
]\/[: External
|
Call\:lculatlon ! MaxCMO
anager o
e I
1 |
o D o)
ch Results ! Similarity u:J
L Management ' Comparison |
o= | 1 (&)
= | ®
& [| : &
Overview |«----
Manager L
Structure Task Rgclauestlst
Manager |« ----1 Managers and Resutis

DataBase /
\ Analysis / r Filesystem

Manager «----'

Workflow

Request Submission

User

- | »
219
TS
S|
Q| E
2|8
S| o

: | ©
Sl

Storage
Node (*)

QNotifica’[ion Email A
S| |
Management : S
S| o
Q
& =
Q
= -
0 =
- Q
wn >
o) @
B 2

(*) Currently on the

ecame machine

Workflow

Result Retrieval

Storage
User Node ()

A A

Legacy Problems:

« HTML Output of results
is prepared on the
Compute Nodes, but
should be dynamically
generated on the
Front Node on request

1a. Request Status
1d. Return Status
2a. Request Data

ecame machine

Workflow

Pre-/Post-Processing (PPP)

User

Storage
Node ()

Management Legacy Problems:

A

« PPP is performed on the
Front Node, but should
be done on a Compute Node,
especially for bigger datasets

« HTML Output of results is prepared
on the Compute Nodes, but should
be dynamically generated on the
Front Node on request

ecame machine

1. Request PPP
5. Return Update

System Architecture

Hardware

Local Cluster Remote Systems

Master Node
dual-processor
Xeon 3.2GHz / 4GB
1000GB SATA Raid5

Browser

NOW
FUTURE

2x Slave Node
dual-processor
Xeon 3.2GHz / 4GB
80GB SATA HD

2x Slave Node

dual-processor, dual-core
Xeon 3.2GHz / 4GB
80GB SATA HD

4 Compute Nodes
8 Processors

12 Cores

System Architecture

Hardware (Currently)

EXTERNAL

Name Resolution
procksi.cs.nott.ac.uk
procksiX.cs.nott.ac.uk

Network Card
eth1

Trusted Services
Master: www, ssh
Slave: ssh

IP Range
Master: 128.243.21.180
Slave: 128.243.21.18X

Master

Node

Slave Node

Slave Node

Slave Node

INTERNAL

Name Resolution
master0Y.procksi.local
slave0Z.procksi.local

Network Card
ethO

Trusted Services
Master: all
Slave: all

IP Range
Master: 192.168.199.0Y
Slave: 192.268.199.17

OpPON o/l

SPON 9AB|S

()
p -
-
njd
Q
(¢}
a—
L
O
-
<
&
)
-
N
>
(/p

SPON SPON

181SE\ 18IS\

ProCKSi

uoI198UU0Y) [eulalX]

Hardware (Future Plans 1)

System Architecture

Hardware (Future Plans 2)

Master Node Management
Switch
S |
o Master Node | |
S | |
o
c
S O) [)
O i B S S
) o o o
Core pzd p = >
' o o) [0
>
- Switch E E E L>U
= 0p) o)) @) AN
9
b
L

Storage Node

Disk Storage

System Architecture

Services
User —> Master > Slave
+— Node < Node
- Browser « Web Server (apache)
(incl. Java, .
JavaScript) Database Server (mysql)
 File System Server (nfs) + File System Client (nfs)
« Queuing System (pbs: server, sched) « Queing System (pbs: mom)
« Email- « Email Server (postfix)
P
rogram « Scheduling Server (cron)
« Monitoring System (ganglia: gmetad) « Monitoring System (gmond)
 Information System (yp: serv, passwd) - Information System (yp: bind)
* (Shell) - System Access (ssh) - System Access (ssh)

« Time Synchronisation (ntp)
« ProCKSI Framework

Time Synchronisation (ntp)
ProCKSI Executables

System Architecture

Scheduling System
Request / Task / Job Scheduling

= I= 1

Database File Queuing
System System System

Data
Logs

Data
Status

Data
Logs

Status
Logs

Status
Logs

Status
Data

Data
Logs

Local System
(Front-End)

Remote System
(Back-End)

Definitions

Data Management

Dataset:

« Currently: Collection of PDB structures (chains) and uploaded similarity matrices

 Future plans: Previously calculated, uploaded similarity matrices should be checked
against the list of structures and be reformatted to internal format

Results (1) from Similarity Comparisons:
- Currently: Entire similarity matrices of different sources
« In development:
Additionally, all generated files: pictures, intermediate results (e.g. contact maps), ...
 Future plans:
Generate similarity matrices dynamically from single pair-wise comparison results
stored in the database

Results (2) from Post-Processing (Analysis)
 Currently:

Derivatives of similarity matrices, e.g. clustering, depending from one result file (1)
 Future plans:

Multiple derivatives of one parent possible, e.g. from different clustering steps

Definitions

Meta-Data Management (Currently)

Request:

« Unique handle for the combination of a dataset, tasks, and request parameters
« Request parameters: e.g. request description, settings for notification by email
 Independent requests for the same “user”

Task:
« Something to be performed with the given dataset,
- calculation of PDB structure pictures (1D)
- comparison of pairs of proteins with a given similarity method (2D)
- Task parameters: e.g. parameters for each comparison method, output
parameters for picture generation, ...
- Could be renamed into “action” as “task” is also used in other contexts

Job:
« Everything that lives in a queue, e.g. local queue (ProCKSI cluster), remote queue
(University cluster), external queue (web service, grid service)

Definitions

User Management (Future Plans)

User:

« Unique entity, represented by a unique email-address

« Can manage multiple requests using the same dataset

 Authentication to gain access to user data (requests, personalised settings)

Alternative:
- Introduce weak layer of security:

MD5-Hash representing the request instead of an integer ID (from database)
 Allow the user to access/delete data without authentication,

but just by knowing the MD5-hash

Queuing System

Job Management

Management Storage : Compute
Node (MN) P Node (SN) Node (CN)

1.

W

6.
8.

9.

MN: Necessary data for each job is chosen from database,
prepared (packed + compressed) and saved on SN: /home/input.tgz

MN: Next job in the queue is sent to CN: job.pbs

CN: New unique job directory is created: /scratch/id_job/
CN: Necessary data is fetched from SN and stored
(uncompressed + unpacked) in /scratch/id_job/input/

CN: Main execution starts and writes its results into /scratch/id_job/output/

CN: All results in the output directory are prepared
(packed + compressed) and saved on SN: /home/output.tgz
CN: Unique job directory is deleted

10.MN: Job status is checked periodically and sent back from CN when finished

11.MN: Results are handled (uncompressed + unpacked) and registered in database

Scheduling

Problem Space: Q\(\ob I I I I I
The problem space for an all-against-all N\

comparison of a dataset of S protein

structures using M different similarity
comparison methods can be represented
as 3D cube.

Partitionig the Problem Space:

For a most efficient calculation of all cells in
the 3D problem space, it must be subdivided

Structures

into sub-cubes, which are called jobs when
placed into the queue of a queuing system.

Examples:

« Comparison of one pair of proteins using one method
in the task list => SxSxM jobs, each performing 1 comparison

« All-against-all comparison of the entire dataset with one method => M jobs, each performing
SxS comparisons

« Comparison of one pair of proteins using all methods in the task list => SxS jobs, each
performing M comparisons

« Intelligent partitioning of the 3D problem space, comparing a subset of proteins with a subset
of methods

Structures

Scheduling

&
, e I I N
Current Implementation: @e\
« Problem space is sliced per task,
forming M jobs 4

« Each job in the queue performs an
SxS comparisons for each method

Legacy Problems:
- Tasks and jobs are not differentiated
in the database

Structures

Task = Job

« Quadratic growth of the number of Structures

comparisons per job with linear growth
of the number of structures

Scheduling

&66 I .] L] L] L] L
Solution Space: @Q@%l B I N

Each similarity comparison methods can [| | | i
provide several similarity measures 4 z

For one slice in the 3D problems space 7
using one particular method, we might get
several slices in the 3D solution space
providing several measures

Structures
I
|

Special Cases: -

The 3D problem space is reduced to a 2D

problem space (1xPxM) when using methods >
.) Structures

that do not compare pairs of proteins but work

on one single protein, e.g. calculating the PDB

picture, or getting additional data from the iHOP

web service.

Scheduling

Lifecycle of Requests Status

2. A new request is submitted in the browser
« The request is registered in the database

« Request parameters and the dataset (structures and matrices) prepared

are registered into the database

4. The scheduler (cron) checks the status of all tasks periodically and sets
the status of the request accordingly: v
« As soon as the first task has been queued (Q) or been processed even

further (R, C, F), the request is said to be running and the status of the running
request is changed in the database. l
« As soon as the last task has finished successfully (F) or with errors (E), the o
request is said to have finished and its status is changed in the database. finished
« If a request has finished, and the expiration date (soft limit) has been l
exceeded, the request is said to have expired and its status is changed in the ~ €xpired
database. l

 If a request has been expired and the deletion date (hard limit) has been
exceeded, the complete requeste including all tasks and data is deleted from deleted
the database and hard disk.

Database

Current Design

modules

ot idlmodule int

tasks

o i _task

int

Structures / Results:

« All information on files are stored

in the files table

« Additional information for
structures stored in the
“structures” table

« Additional information for
results stored in the
“results” table

o~

Legacy Problems:
« Only meta-data are stored:
- Files: structures, results
- Input Data: requests, tasks
- Process data: requests, tasks
« No job data stored: job = task
« No single similarity values stored

requests

o jd_request int

structures

S id_structure int

results

— id resalt_ i ——3| files structures and results are

weak entities that depend

~o el _file int on the Strong en’“ty ﬁ/eS,

Database

Obsolete Development (Juan-Ramon)

modules

Jobs

2 id_module int

¢ id_job int

k_,,.f’

tasks

< il_task int

e

measLres

o jd_paidr int
o pame varchar (255)

pairs

= id_pair_int| Open Questions:

« How to represent
sub-cubes in jobs?
Legacy Problems: « How to treat |

- DB extension was designed to .
work with web services that take — d -
exactly one pair of structures el il

« Table “jobs” does not take ranges
of structures (sub-cubes of the
problems space) into account

« Table “pairs” not

necessary
when using a results
composite key o id_result int [T files

o id_file int

1D/2D-tasks?

structures

o il_structure int

*Where to store measures
(similarity values) of
pair-wise comparisons?
DataBase vs. XML

Scheduling

Lifecycle of Tasks Status
2. A new request is submitted in the browser
. All tasks that the user has selected to be performed are prepared and prepared
registered into the database.
4. The scheduler (cron) checks the status of all tasks periodically and
acts accordingly: - | queued
« Prepared tasks are submitted into the queuing system. +
« When a Task starts, it changes its own status in the database. running
v
« When a Task reaches its end, it changes its own status in the database. completed
« When a Task has been completed, its results are post-processed (e.g. l
registered in the database), and the status of the task is changed in the finished
database, and an expiration and deletion date is set.
 In case that there have occured any serious problems, the status of the task (error)

is changed in the database accordingly.

« Tasks are deleted automatically when the entire request is deleted. (deleted)

Scheduling

Dependencies

Some parent tasks must have finished successfully before a dependent
task can be started:

e.g. Contacts must have been calculated before USM and MaxCMO
similarities can be calculated

If a parent task fails, a dependent task must be considered as failed, too

Legacy Problems:
« Currently:

Each task handler sets its own status, writing directly into the database.

Future plans:

The scheduler should check the status of a task/job directly in the PBS queuing
system, detect if it has started/finished, and set the status in the database
accordingly.

Currently:

There are separate schedulers for requests, tasks, and jobs.

Future plans:

There should be one scheduling daemon that can be started, stopped, modified.

Data Resources

Dataset
Protein structures can be obtained using the following ways:

User: Upload of arbitrary protein structures from his/her harddisk
+ no maintenance
- user needs to upload entire dataset

Online repository: PDB repository (hitp://www.pdb.org/)

+ repository is maintained externally and always up-to-date

- each protein in the dataset needs to be downloaded
on demand over the internet

- the same protein structure might be downloaded multiple times
for different datasets

Local repository: Local copy of the PDB repository
+ "caching" of structures: quick access
+ low data volume to be transferred
- synchronisation with official repository necessary (nightly/weekly updates)
- "caching" of structures: structures that are not available locally,
must be download from online repository

http://www.pdb.org/
http://www.pdb.org/
http://www.pdb.org/

Data Resources

Similarity Comparisons
Similarity comparisons can be performed using the following resources:

Local: ProCKSI Cluster
+ exclusive use of resources: highly available
+ direct access to database - high maintenance

+ usage: any software - high acquisition costs

Remote: University Cluster or the Grid

+ low maintenance

+ NO acquisition costs

- usage: software that can be installed & runs in this environment

- shared use of resources: queuing times, restricted calculation times

External: Web services

+ low maintenance +/- shared use of resources
+ NO acquisition costs - usage: only for provided services

Data Resources

Resources
Resources for similarity comparison methods, clustering, visualisation
and further information

Local Methods:

+ implemented: USM, MaxCMO, DaliLite, TM-align, FAST, CE, Vorolign
+ implemented: gclust, HyperTree

- not available: LGA, FlexProt, SSM

Web Services:

+ available: DaliLite, iIHOP, others

+/- in development: CATH-SSAP, Vorolign
- not available: SSM

Others: Barcelona Supercomputing Center, European Bioinformatics Institute

Web Pages
+/- linked: iIHOP, RCSB, CATH, SCOP

http://inb.bsc.es/services/documentation/services.php
http://inb.bsc.es/services/documentation/services.php
http://www.ebi.ac.uk/Tools/webservices/

Data Interchange

Job Submission

Job submission specifies can be described

« Job name and description - for local execution:

« Resources needed (CPU, OS, ...) job submission script

- File staging (before and after execution) (PBS)

« Main command execution - for GRID execution:
job submission description language
(JDSL)

Job Execution (Proposal)

<job id=“ID” description="DESCRIPTION">
<log filename=“FILENAME” />

<structure id="“ID” label="LABEL” filename=“FILENAME” />

<method type=“1D|2D” name=“NAME”">
<param name=“NAME” value="VALUE” />
<measure name=“NAME” />
<return name="SIMILARITY|ALIGNMENT|MATRIX|FILE” />
</method>
</job>

Data Interchange

Partial Results (Proposal)

<job id="ID” node="NODE” start="TIME” end="TIME”>
<status flag="FLAG” success="NUMBER” failed="NUMBER” />
<log filename=“FILENAME” />

<message type=“TYPE">SMESSAGE</message>
<structure id=“ID” label="LABEL” filename=“FILENAME” />

<comparison id_structure1="ID1” id_structure2=“ID2">
<message type="TYPE">MESSAGE</message>

<method name="NAME” version="VERSION”">
<similarity measure="MEASURE”">VALUE</similarity>
<alignment label="LABEL">ALIGNMENT</alignment>
<matrix type="TYPE” label="LABEL">MATRIX</matrix>
<file type="TYPE” name="NAME” label="LABEL” />

</method>

</comparison>
</job>

Usability / Frontend
 Bigger datasets:
- Pagination of results / output
« Integrative view of results from different calculation
« Download of results; size!
« Send PPP tasks into queue
- Upload:
« Prevent multiple uploads while files are being uploaded/split
« Accept only ticked chains
« Caching of input and results: PDB
« Upload external similarity matrices in post- not pre-processing step
« Analysis:
 Allow more trees to be displayed in one applet
« Different standardisation/ clustering tasks must not overwrite existing results
« User management
« One user with different requests
 Restricted access to requests only by password
« Webdesign
« Better navigation and layout
« Corporate Design (CD) with standardised CSS
 Restrict number of emails to be sent (in development)

Parallelisation (» Collaboration with Azhar)
«Standardised format for job submission, execution, results
«Scheduling of tasks/jobs

«Show status (requests, tasks, jobs) of entire cluster (in development)
«Integration of GRID middleware

*Resubmit failed jobs, tasks, requests on demand

Database

«Complete re-design / re-engineering

taking 3D problem/solution space, jobs, measures into account
*Referential integrity checks

«Performance!

Data Handling / Error Handling / Logging / Debugging

Policy for all error, log, debug output: output chain

Policy for errors, warnings, notices, ... in different environments:
front-end (browser), back-end (files)

Hierarchical representation of results in database

Information / Representation

«Documantation
«Description of input / output parameters
*Tooltips (in development)

+Visualisation
«Alignment from any method (standardisation!)
«Contact maps with bows (in development)

Extension

«General approach to integrate web services, e.g. CATH-SSAP
«Other local methods, e.g. Vorolign, LGA, ...

-Provide API to access ProCKSI as a web service

Research
*Reengineer USM according to latest papers + jbig compression
Integrate Total Consensus approach

Misc
-Better installation / deployment tool: master, slave nodes
License agreement

Conclusions

ProCKSI needs dedicated collaborators to move on!

Collaboration in terms of:

« Sharing code
— SVN repository

- Sharing data
— Database with pre-processed, post-processed data

« Sharing resources
— Separated development systems
— Shared test-, live-systems

« Sharing knowledge
— Wiki
— Ticketing System
— Mailing list

Action Points

Priorities of the points given in the Agenda:

« Research Collaborations
— USM (libraries, jbig): Paolo Ferragina, Gabriel Valiente
— Scheduling (distribution, scalability): Gianluigi Follino, Azar Shah
— Clustering (TE vs. TC): Gianluigi Follino, Daniel Barthel

« Resolve Legacy Problems

— Generate HTML output from database on the front-node

— Standardise/cluster results using the queuing system and
compute nodes

— Validate user similarity matrices against list of structures and convert
it internal format e.g. by storing it in database

— Account for bigger datasets and time needed for actions
(e.g. pagination, meta-refresh)

— Restrict access to user data (e.g. MD5 request ID, .htaccess)

Action Points

 Interoperability
— Redesign database for scientific and meta-data

— Design data exchange format for scientific and meta-data
to go along with database

« Extension
— Introduce caching on master / slave nodes: e.g. PDB
— Improve cluster design: second switch, second master node
— Use condor / globus toolkit for integration of external cluster / grid

— Different entry points / front-ends for heavy vs. normal users:
« FTP upload & download
« XML “workflow” description to circumvent web-interface

« Documentation
— Help pages and tooltips

